Isospectral locally symmetric manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isospectral locally symmetric manifolds

In this article we construct closed, isospectral, non-isometric locally symmetric manifolds. We have three main results. First, we construct arbitrarily large sets of closed, isospectral, non-isometric manifolds. Second, we show the growth of size these sets of isospectral manifolds as a function of volume is super-polynomial. Finally, we construct pairs of infinite towers of finite covers of a...

متن کامل

Counting Locally Symmetric Manifolds

We give quantitive estimates for the number of locally symmetric spaces of a given type with bounded volume. Explicitly, let S be a symmetric space of non-compact type without Euclidean de Rham factors. Then, after rescaling appropriately the Riemannian metric, the following hold. Theorem A If rank(S) = 1 and S ≇ H2,H3, then there are at most V V Riemannian manifolds, locally isometric to S, wi...

متن کامل

Locally symmetric submanifolds lift to spectral manifolds

In this work we prove that every locally symmetric smooth submanifoldM of Rn gives rise to a naturally defined smooth submanifold of the space of n × n symmetric matrices, called spectral manifold, consisting of all matrices whose ordered vector of eigenvalues belongs toM. We also present an explicit formula for the dimension of the spectral manifold in terms of the dimension and the intrinsic ...

متن کامل

Towers of isospectral manifolds

Given two isospectral not isometric manifolds, we construct a new couple of such manifolds as the total spaces of two Riemannian submersions with totally geodesic fibers isometric to the given ones and of basis any other given manifold. By iteration, we obtain families of isospectral not isometric manifolds.

متن کامل

Isospectral towers of Riemannian manifolds

In this paper we construct, for n ≥ 2, arbitrarily large families of infinite towers of compact, orientable Riemannian n-manifolds which are isospectral but not isometric at each stage. In dimensions two and three, the towers produced consist of hyperbolic 2-manifolds and hyperbolic 3-manifolds, and in these cases we show that the isospectral towers do not arise from Sunada’s method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2014

ISSN: 0022-2518

DOI: 10.1512/iumj.2014.63.5242